LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Clinical encounter heterogeneity and methods for resolving in networked EHR data: A study from N3C and RECOVER programs

Photo from wikipedia

OBJECTIVE: Clinical encounter data are heterogeneous and vary greatly from institution to institution. These problems of variance affect interpretability and usability of clinical encounter data for analysis. These problems are… Click to show full abstract

OBJECTIVE: Clinical encounter data are heterogeneous and vary greatly from institution to institution. These problems of variance affect interpretability and usability of clinical encounter data for analysis. These problems are magnified when multi-site electronic health record data are networked together. This paper presents a novel, generalizable method for resolving encounter heterogeneity for analysis by combining related atomic encounters into composite macrovisits. MATERIALS AND METHODS: Encounters were composed of data from 75 partner sites harmonized to a common data model as part of the NIH Researching COVID to Enhance Recovery Initiative, a project of the National Covid Cohort Collaborative. Summary statistics were computed for overall and site-level data to assess issues and identify modifications. Two algorithms were developed to refine atomic encounters into cleaner, analyzable longitudinal clinical visits. RESULTS: Atomic inpatient encounters data were found to be widely disparate between sites in terms of length-of-stay and numbers of OMOP CDM measurements per encounter. After aggregating encounters to macrovisits, variance of length-of-stay (LOS) and measurement frequency decreased. A subsequent algorithm to identify hospitalized macrovisits further reduced data variability. DISCUSSION: Encounters data are a complex and heterogeneous component of EHR data and these issues are not addressed by existing methods. These types of complex and poorly studied issues contribute to the difficulty of deriving value from EHR data, and these types of foundational, large-scale explorations and developments are necessary to realize the full potential of modern real world data. CONCLUSION: This paper presents method developments to work with and resolve EHR encounters data in a generalizable way as a foundation for future analyses and research.

Keywords: ehr data; encounter; encounter heterogeneity; clinical encounter

Journal Title: Journal of the American Medical Informatics Association : JAMIA
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.