LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Matrix prior for data transfer between single cell data types in latent Dirichlet allocation

Photo by campaign_creators from unsplash

Single cell ATAC-seq (scATAC-seq) enables the mapping of regulatory elements in fine-grained cell types. Despite this advance, analysis of the resulting data is challenging, and large scale scATAC-seq data are… Click to show full abstract

Single cell ATAC-seq (scATAC-seq) enables the mapping of regulatory elements in fine-grained cell types. Despite this advance, analysis of the resulting data is challenging, and large scale scATAC-seq data are difficult to obtain and expensive to generate. This motivates a method to leverage information from previously generated large scale scATAC-seq or scRNA-seq data to guide our analysis of new scATAC-seq datasets. We analyze scATAC-seq data using latent Dirichlet allocation (LDA), a Bayesian algorithm that was developed to model text corpora, summarizing documents as mixtures of topics defined based on the words that distinguish the documents. When applied to scATAC-seq, LDA treats cells as documents and their accessible sites as words, identifying “topics” based on the cell type-specific accessible sites in those cells. Previous work used uniform symmetric priors in LDA, but we hypothesized that nonuniform matrix priors generated from LDA models trained on existing data sets may enable improved detection of cell types in new data sets, especially if they have relatively few cells. In this work, we test this hypothesis in scATAC-seq data from whole C. elegans nematodes and SHARE-seq data from mouse skin cells. We show that nonsymmetric matrix priors for LDA improve our ability to capture cell type information from small scATAC-seq datasets.

Keywords: seq data; scatac seq; single cell; cell

Journal Title: PLOS Computational Biology
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.