Background Touchscreen-based behavioral assays provide a robust method for assessing cognitive behavior in rodents, offering great flexibility and translational potential. The development of touchscreen assays presents a significant programming and… Click to show full abstract
Background Touchscreen-based behavioral assays provide a robust method for assessing cognitive behavior in rodents, offering great flexibility and translational potential. The development of touchscreen assays presents a significant programming and mechanical engineering challenge, where commercial solutions can be prohibitively expensive and open-source solutions are underdeveloped, with limited adaptability. New method Here, we present Visiomode (www.visiomode.org), an open-source platform for building rodent touchscreen-based behavioral tasks. Visiomode leverages the inherent flexibility of touchscreens to offer a simple yet adaptable software and hardware platform. The platform is built on the Raspberry Pi computer combining a web-based interface and powerful plug-in system with an operant chamber that can be adapted to generate a wide range of behavioral tasks. Results As a proof of concept, we use Visiomode to build both simple stimulus-response and more complex visual discrimination tasks, showing that mice display rapid sensorimotor learning including switching between different motor responses (i.e., nose poke versus reaching). Comparison with existing methods Commercial solutions are the ‘go to’ for rodent touchscreen behaviors, but the associated costs can be prohibitive, limiting their uptake by the wider neuroscience community. While several open-source solutions have been developed, efforts so far have focused on reducing the cost, rather than promoting ease of use and adaptability. Visiomode addresses these unmet needs providing a low-cost, extensible platform for creating touchscreen tasks. Conclusions Developing an open-source, rapidly scalable and low-cost platform for building touchscreen-based behavioral assays should increase uptake across the science community and accelerate the investigation of cognition, decision-making and sensorimotor behaviors both in health and disease.
               
Click one of the above tabs to view related content.