Laminin, a basement membrane protein discovered in 1979, was shortly thereafter implicated in the polarization of epithelial cells in both mammals and a variety of lower organisms. To transduce a… Click to show full abstract
Laminin, a basement membrane protein discovered in 1979, was shortly thereafter implicated in the polarization of epithelial cells in both mammals and a variety of lower organisms. To transduce a spatial cue to the intrinsic polarization machinery, laminin must polymerize into a dense network that forms the foundation of the basement membrane. Evidence suggests that activation of the small GTPase Rac1 by β1-integrins mobilizes laminin-binding integrins and dystroglycan to consolidate formation of the laminin network and initiate rearrangements of both the actin and microtubule cytoskeleton to help establish the apicobasal axis. A key coordinator of spatial signals from laminin is the serine-threonine kinase Par-1, which is known to affect dystroglycan availability, microtubule and actin organization, and lumen formation. The signaling protein integrin-linked kinase (ILK) may also play a role. Despite significant advances, knowledge of the mechanism by which assembled laminin produces a spatial signal remains fragmentary, and much more research into the complex functions of laminin in polarization and other cellular processes is needed.
               
Click one of the above tabs to view related content.