The formation of long-lived memory T cells is a critical feature of the adaptive immune response. T cells undergo metabolic reprogramming to establish a functional memory population. While initial studies… Click to show full abstract
The formation of long-lived memory T cells is a critical feature of the adaptive immune response. T cells undergo metabolic reprogramming to establish a functional memory population. While initial studies characterized key metabolic pathways necessary for memory T-cell development, recent findings highlight that metabolic regulation of memory T-cell subsets is diverse. Here we describe the different requirements for metabolic programs and metabolism-related signaling pathways in memory T-cell development. We further discuss the contribution of cellular metabolism to memory T-cell functional reprogramming and stemness within acute and chronic inflammatory environments. Last, we highlight knowledge gaps and propose approaches to determine the roles of metabolites and metabolic enzymes in memory T-cell fate. Understanding how cellular metabolism regulates a functionally diverse memory population will undoubtedly provide new therapeutic insights to modulate protective T-cell immunity in human disease.
               
Click one of the above tabs to view related content.