LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A statistical physics approach for disease module detection

Photo from wikipedia

Extensive evidence indicates that the pathobiological processes of a complex disease are associated with perturbation within specific disease neighborhoods of the human protein-protein interaction (PPI) network (a.k.a. the interactome), often… Click to show full abstract

Extensive evidence indicates that the pathobiological processes of a complex disease are associated with perturbation within specific disease neighborhoods of the human protein-protein interaction (PPI) network (a.k.a. the interactome), often referred to as the disease module. Many computational methods have been developed to integrate the interactome and omics profiles to extract context-dependent disease modules. Yet, existing methods all have fundamental limitations in terms of rigor and/or efficiency. Here, we developed a statistical physics approach based on the random-field Ising model (RFIM) for disease module detection, which is both mathematically rigorous and computationally efficient. We applied our RFIM approach with genome-wide association studies (GWAS) of six complex diseases to examine its performance for disease module detection. We found that our RFIM approach outperforms existing methods in terms of computational efficiency, connectivity of disease modules, and robustness to the interactome incompleteness.

Keywords: physics; disease; disease module; module detection

Journal Title: Genome Research
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.