LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Frequency and phase relations of entangled photons observed by a two-photon interference experiment

Photo from wikipedia

An entangled photon experiment has been performed with a large variation of the temperature of the non-linear crystal generating the entangled pair by spontaneous downconversion. The photon pairs are separated… Click to show full abstract

An entangled photon experiment has been performed with a large variation of the temperature of the non-linear crystal generating the entangled pair by spontaneous downconversion. The photon pairs are separated by a nonpolarizing beamsplitter, and the polarization modes are mixed by half wave plates. The correlation function of the coincidences is studied as a function of the temperature. In the presence of a narrow interference filter we observe that the correlation changes between -1 and +1 about seven times within a temperature interval of about 30 degrees C. We show that the common simplified single-mode pair representation of entangled photons is insufficient to describe the results, but that the biphoton description that includes frequency and phase details gives close to perfect fit with experimental data for two different choices of interference filters. We explain the main ideas of the underlying physics, and give an interpretation of the two-photon amplitude which provides an intuitive understanding of the effect of changing the temperature and inserting interference filters.

Keywords: entangled photons; two photon; temperature; interference; photon; frequency phase

Journal Title: Physical Review A
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.