LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Jackiw-Rebbi states in interfaced binary waveguide arrays with Kerr nonlinearity

Photo by meadowmariee from unsplash

We systematically investigate the optical analogs of quantum relativistic Jackiw-Rebbi states in binary waveguide arrays in the presence of Kerr nonlinearity with both self-focusing and self-defocusing cases. The localized profiles… Click to show full abstract

We systematically investigate the optical analogs of quantum relativistic Jackiw-Rebbi states in binary waveguide arrays in the presence of Kerr nonlinearity with both self-focusing and self-defocusing cases. The localized profiles of these nonlinear Jackiw-Rebbi states can be calculated exactly by using the shooting method. We show that these nonlinear Jackiw-Rebbi states have a very interesting feature which is totally different from all other well-known nonlinear localized structures, including optical solitons. Namely, the profiles of nonlinear JR states with higher peak amplitudes can totally envelope the ones with lower peak amplitudes. We demonstrate that media with the positive nonlinear coefficient can support stable Jackiw-Rebbi states for a wide range of peak amplitudes, whereas media with the negative nonlinear coefficient are only able to support Jackiw-Rebbi states with low peak amplitudes. A general rule for the detuning of nonlinear Jackiw-Rebbi states in binary waveguide arrays is found.

Keywords: rebbi states; jackiw rebbi; waveguide arrays; binary waveguide

Journal Title: Physical Review A
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.