This work deals with quantum graphs, focusing on the transmission properties they engender. We first select two simple diamond graphs, and two hexagonal graphs in which the vertices are all… Click to show full abstract
This work deals with quantum graphs, focusing on the transmission properties they engender. We first select two simple diamond graphs, and two hexagonal graphs in which the vertices are all of degree 3, and investigate their transmission coefficients. In particular, we identified regions in which the transmission is fully suppressed. We also considered the transmission coefficients of some series and parallel arrangements of the two basic graphs, with the vertices still preserving the degree 3 condition, and then identified specific series and parallel compositions that allow for windows of no transmission. Inside some of these windows, we found very narrow peaks of full transmission, which are consequences of constructive quantum interference. Possibilities of practical use as the experimental construction of devices of current interest to control and manipulate quantum transmission are also discussed.
               
Click one of the above tabs to view related content.