Dynamical evolution of systems with sparse Hamiltonians can always be recognized as continuous-time quantum walks (CTQWs) on graphs. In this paper, we analyze the short-time asymptotics of CTQWs. In recent… Click to show full abstract
Dynamical evolution of systems with sparse Hamiltonians can always be recognized as continuous-time quantum walks (CTQWs) on graphs. In this paper, we analyze the short-time asymptotics of CTQWs. In recent studies, it was shown that for the classical diffusion process the short-time asymptotics of the transition probabilities follows power laws whose exponents are given by the usual combinatorial distances of the nodes. Inspired by this result, we perform a similar analysis for CTQWs in both closed and open systems, including time-dependent couplings. For time-reversal symmetric coherent quantum evolutions, the short-time asymptotics of the transition probabilities is completely determined by the topology of the underlying graph analogously to the classical case, but with a doubled power-law exponent. Moreover, this result is robust against the introduction of on-site potential terms. However, we show that time-reversal symmetry-breaking terms and noncoherent effects can significantly alter the short-time asymptotics. The analytical formulas are checked against numerics, and excellent agreement is found. Furthermore, we discuss in detail the relevance of our results for quantum evolutions on particular network topologies.
               
Click one of the above tabs to view related content.