LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Buffer-gas cooling, high-resolution spectroscopy, and optical cycling of barium monofluoride molecules

Photo by martindorsch from unsplash

We demonstrate buffer-gas cooling, high-resolution spectroscopy and cycling fluorescence of cold barium monofluoride (BaF) molecules. Our source produces an intense and internally cold molecular beam containing the different BaF isotopologues… Click to show full abstract

We demonstrate buffer-gas cooling, high-resolution spectroscopy and cycling fluorescence of cold barium monofluoride (BaF) molecules. Our source produces an intense and internally cold molecular beam containing the different BaF isotopologues with a mean forward velocity of 190 m/s. For a well-collimated beam of 138BaF we observe a flux of more than 1e10 molecules/sr/pulse in the X2Sigma, N=1 state in our downstream detection region. Studying the absorption line strength of the intermediate A'Delta state we infer a lifetime of 790+\-346 ns, significantly longer than previously estimated. Finally, highly-diagonal Franck-Condon factors and magnetic remixing of dark states allow us to realize a quasi-cycling transition in 138BaF that is suitable for future laser cooling of this heavy diatomic molecule.

Keywords: cooling high; gas cooling; high resolution; spectroscopy; buffer gas; resolution spectroscopy

Journal Title: Physical Review A
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.