LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Perturbation theories for symmetry-protected bound states in the continuum on two-dimensional periodic structures

Photo from wikipedia

On dielectric periodic structures with a reflection symmetry in a periodic direction, there can be antisymmetric standing waves (ASWs) that are symmetry-protected bound states in the continuum (BICs). The BICs… Click to show full abstract

On dielectric periodic structures with a reflection symmetry in a periodic direction, there can be antisymmetric standing waves (ASWs) that are symmetry-protected bound states in the continuum (BICs). The BICs have found many applications, mainly because they give rise to resonant modes of extremely large quality-factors ($Q$-factors). The ASWs are robust to symmetric perturbations of the structure, but they become resonant modes if the perturbation is non-symmetric. The $Q$-factor of a resonant mode on a perturbed structure is typically $O(1/\delta^2)$ where $\delta$ is the amplitude of the perturbation, but special perturbations can produce resonant modes with larger $Q$-factors. For two-dimensional (2D) periodic structures with a 1D periodicity, we derive conditions on the perturbation profile such that the $Q$-factors are $O(1/\delta^4)$ or $O(1/\delta^6)$. For the unperturbed structure, an ASW is surrounded by resonant modes with a nonzero Bloch wave vector. For 2D periodic structures, the $Q$-factors of nearby resonant modes are typically $O(1/\beta^2)$, where $\beta$ is the Bloch wavenumber. We show that the $Q$-factors can be $O(1/\beta^6)$ if the ASW satisfies a simple condition.

Keywords: protected bound; bound states; periodic structures; resonant modes; symmetry protected; perturbation

Journal Title: Physical Review A
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.