A combined density and first-order reduced-density-matrix (1RDM) functional method is proposed for the calculation of potential energy curves (PECs) of molecular multibond dissociation. Its 1RDM functional part, a pair density… Click to show full abstract
A combined density and first-order reduced-density-matrix (1RDM) functional method is proposed for the calculation of potential energy curves (PECs) of molecular multibond dissociation. Its 1RDM functional part, a pair density functional, efficiently approximates the ab initio pair density of the complete active space self-consistent-field (CASSCF) method. The corresponding approximate on top pair density {\Pi} is employed to correct for double counting a correlation functional of density functional theory (DFT). The proposed ELS-DM{\Pi}DFT method with the extended Lowdin-Shull (ELS) 1RDM functional with dispersion and multibond (DM) corrections augmented with the {\Pi}DFT functional closely reproduces PECs of multibond dissociation in the paradigmatic N_2 , H_2O, and H_2CO molecules calculated with the recently proposed CAS{\Pi}DFT (CASSCF augmented with a {\Pi} based scaled DFT correlation correction) method. Furthermore, with the additional M-correction, ELS-DM{\Pi}DFT+M reproduces well the benchmark PEC of the N_2 molecule by Lie and Clementi.
               
Click one of the above tabs to view related content.