LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Neural-network quantum state tomography in a two-qubit experiment

Photo from wikipedia

We study the performance of efficient quantum state tomography methods based on neural network quantum states using measured data from a two-photon experiment. Machine learning inspired variational methods provide a… Click to show full abstract

We study the performance of efficient quantum state tomography methods based on neural network quantum states using measured data from a two-photon experiment. Machine learning inspired variational methods provide a promising route towards scalable state characterization for quantum simulators. While the power of these methods has been demonstrated on synthetic data, applications to real experimental data remain scarce. We benchmark and compare several such approaches by applying them to measured data from an experiment producing two-qubit entangled states. We find that in the presence of experimental imperfections and noise, confining the variational manifold to physical states, i.e. to positive semi-definite density matrices, greatly improves the quality of the reconstructed states but renders the learning procedure more demanding. Including additional, possibly unjustified, constraints, such as assuming pure states, facilitates learning, but also biases the estimator.

Keywords: state; quantum; state tomography; quantum state; network quantum; neural network

Journal Title: Physical Review A
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.