The use of bichromatic counter-rotating laser field is known to generate high-order harmonics with nonzero ellipticity. By combining such laser field with a plasmonic-enhanced spatially inhomogeneous field, we propose a… Click to show full abstract
The use of bichromatic counter-rotating laser field is known to generate high-order harmonics with nonzero ellipticity. By combining such laser field with a plasmonic-enhanced spatially inhomogeneous field, we propose a way to influence the subcycle dynamics of the high-harmonic generation process. Using the numerical solution of the time-dependent Schr\"odinger equation combined with classical trajectory Monte Carlo simulations, we show that the change of the direction and the strength of the plasmonic field selectively enhances or suppresses certain recombining electron trajectories. This in turn modifies the ellipticity of the emitted attosecond pulses.
               
Click one of the above tabs to view related content.