LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Radio-frequency driving of an attractive Fermi gas in a one-dimensional optical lattice

Photo from wikipedia

We investigate the response to radio-frequency driving of an ultracold gas of attractively interacting fermions in a one-dimensional optical lattice. We study the system dynamics by monitoring the driving-induced population… Click to show full abstract

We investigate the response to radio-frequency driving of an ultracold gas of attractively interacting fermions in a one-dimensional optical lattice. We study the system dynamics by monitoring the driving-induced population transfer to a third state, and the evolution of the momentum density and pair distributions. Depending on the frequency of the radio-frequency field, two different dynamical regimes emerge when considering the evolution of the third level population. One regime exhibits (off)resonant many-body oscillations reminiscent of Rabi oscillations in a discrete two-level system, while the other displays a strong linear rise. Within this second regime, we connect, via linear response theory, the extracted transfer rate to the system single-particle spectral function, and infer the nature of the excitations from Bethe ansatz calculations. In addition, we show that this radio-frequency technique can be employed to gain insights into this many-body system coupling mechanism away from equilibrium. This is done by monitoring the momentum density redistributions and the evolution of the pair correlations during the drive. Capturing such non-equilibrium physics goes beyond a linear response treatment, and is achieved here by conducting time-dependent matrix product state simulations.

Keywords: frequency driving; frequency; radio frequency; one dimensional; dimensional optical

Journal Title: Physical Review A
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.