The fidelity of gate operations on neutral atom qubits is often limited by fluctuations of the laser drive. Here, we quantify the sensitivity of quantum gate fidelities to laser phase… Click to show full abstract
The fidelity of gate operations on neutral atom qubits is often limited by fluctuations of the laser drive. Here, we quantify the sensitivity of quantum gate fidelities to laser phase and intensity noise. We first develop models to identify features observed in laser self-heterodyne noise spectra, focusing on the effects of white noise and servo bumps. In the weak-noise regime, characteristic of well-stabilized lasers, we show that an analytical theory based on a perturbative solution of a master equation agrees very well with numerical simulations that incorporate phase noise. We compute quantum gate fidelities for one- and two-photon Rabi oscillations and show that they can be enhanced by an appropriate choice of Rabi frequency relative to spectral noise peaks. We also analyze the influence of intensity noise with spectral support smaller than the Rabi frequency. Our results establish requirements on laser noise levels needed to achieve desired gate fidelities.
               
Click one of the above tabs to view related content.