LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Device-independent randomness based on a tight upper bound of the maximal quantum value of chained inequality

Photo by kellysikkema from unsplash

The violation of Bell inequality not only provides the most radical departure of quantum theory from classical concepts, but also paves the way of applications in such as device independent… Click to show full abstract

The violation of Bell inequality not only provides the most radical departure of quantum theory from classical concepts, but also paves the way of applications in such as device independent randomness certification. Here, we derive the tight upper bound of the maximum quantum value for chained Bell inequality with arbitrary number of measurements on each party. \lxh{ The constraints where the upper bound saturates are also presented. This method provides us the necessary and sufficient conditions for some quantum states to violate the chained Bell inequality with arbitrary number of measurements}. Based on the tight upper bound we present the lower bounds on the device independent randomness with respect to the Werner states. \lxh{In particular, we present lower bounds on the randomness generation rates of chained Bell inequality for different number of measurements, which are compared with the family of Bell inequalities proposed by Wooltorton et al. [Phys. Rev. Lett. 129, 150403 (2022)]. Our results show that chained Bell inequality with three measurements has certain advantages at a low level of noise and could be used to improve randomness generation rates in practice.

Keywords: independent randomness; device independent; bell inequality; upper bound; inequality

Journal Title: Physical Review A
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.