LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Experimental generation of polarization entanglement from spontaneous parametric down-conversion pumped by spatiotemporally highly incoherent light

Photo by abstralofficial from unsplash

The influence of pump coherence on the entanglement produced in spontaneous parametric down-conversion (SPDC) is important to understand, both from a fundamental perspective, and from a practical standpoint for controlled… Click to show full abstract

The influence of pump coherence on the entanglement produced in spontaneous parametric down-conversion (SPDC) is important to understand, both from a fundamental perspective, and from a practical standpoint for controlled generation of entangled states. In this context, it is known that in the absence of postselection, the pump coherence in a given degree of freedom (DOF) imposes an upper limit on the generated entanglement in the same DOF. However, the cross-influence of the pump coherence on the generated entanglement in a different DOF is not well-understood. Here, we experimentally investigate the effect of a spatiotemporally highly-incoherent (STHI) light-emitting diode (LED) pump on the polarization entanglement generated in SPDC. Our quantum state tomography measurements using multimode collection fibers to reduce the influence of postselection yield a two-qubit state with a concurrence of 0.531+/-0.006 and a purity of 0.647+/-0.005, in excellent agreement with our theoretically predicted concurrence of 0.552 and purity of 0.652. Therefore, while the use of an STHI pump causes reduction in the entanglement and purity of the output polarization two-qubit state, the viability of SPDC with STHI pumps is nevertheless important for two reasons: (i) STHI sources are ubiquitous and available at a wider range of wavelengths than lasers, and (ii) the generated STHI polarization-entangled two-photon states could potentially be useful in long-distance quantum communication schemes due to their robustness to scattering.

Keywords: spatiotemporally highly; spontaneous parametric; highly incoherent; parametric conversion; entanglement; polarization

Journal Title: Physical Review A
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.