We develop an instantonic calculus to derive an analytical expression for the thermally-assisted tunneling decay rate of a metastable state in a fully connected quantum spin model. The tunneling decay… Click to show full abstract
We develop an instantonic calculus to derive an analytical expression for the thermally-assisted tunneling decay rate of a metastable state in a fully connected quantum spin model. The tunneling decay problem can be mapped onto the Kramers escape problem of a classical random dynamical field. This dynamical field is simulated efficiently by path integral Quantum Monte Carlo (QMC). We show analytically that the exponential scaling with the number of spins of the thermally-assisted quantum tunneling rate and the escape rate of the QMC process are identical. We relate this effect to the existence of a dominant instantonic tunneling path. The instanton trajectory is described by nonlinear dynamical mean-field theory equations for a single site magnetization vector, which we solve exactly. Finally, we derive scaling relations for the "spiky" barrier shape when the spin tunnelling and QMC rates scale polynomially with the number of spins $N$ while a purely classical over-the-barrier activation rate scales exponentially with $N$.
               
Click one of the above tabs to view related content.