The quantum Rabi model is in the scientific spotlight due to the recent theoretical and experimental progress. Nevertheless, a full-fledged classification of its coupling regimes remains as a relevant open… Click to show full abstract
The quantum Rabi model is in the scientific spotlight due to the recent theoretical and experimental progress. Nevertheless, a full-fledged classification of its coupling regimes remains as a relevant open question. We propose a spectral classification dividing the coupling regimes into three regions based on the validity of perturbative criteria on the quantum Rabi model, which allows us the use of exactly solvable effective Hamiltonians. These coupling regimes are i) the perturbative ultrastrong coupling regime which comprises the Jaynes-Cummings model, ii) a region where non-perturbative ultrastrong and non-perturbative deep strong coupling regimes coexist, and iii) the perturbative deep strong coupling regime. We show that this spectral classification depends not only on the ratio between the coupling strength and the natural frequencies of the unperturbed parts, but also on the energy to which the system can access. These regimes additionally discriminate the completely different behaviors of several static physical properties, namely the total number of excitations, the photon statistics of the field, and the cavity-qubit entanglement. Finally, we explain the dynamical properties which are traditionally associated to the deep strong coupling regime, such as the collapses and revivals of the state population, in the frame of the proposed spectral classification.
               
Click one of the above tabs to view related content.