LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Quantum delocalization in photon-pair generation

Photo from wikipedia

The generation of correlated photon pairs is a key to the production of entangled quantum states, which have a variety of applications within the area of quantum information. In spontaneous… Click to show full abstract

The generation of correlated photon pairs is a key to the production of entangled quantum states, which have a variety of applications within the area of quantum information. In spontaneous parametric down-conversion—the primary method of generating correlated photon pairs—the associated photon annihilation and creation events are generally thought of as being colocated: The correlated pair of photons is localized with regards to the pump photon and its positional origin. A detailed quantum electrodynamical analysis highlights a mechanism exhibiting the possibility of a delocalized origin for paired output photons: The spatial extent of the region from which the pair is generated can be much larger than previously thought. The theory of both localized and nonlocalized degenerate down-conversion is presented, followed by a quantitative analysis using discrete-volume computational methods. The results may have significant implications for quantum information and imaging applications, and the design of nonlinear optical metamaterials.

Keywords: pair; quantum delocalization; photon pair; generation; delocalization photon

Journal Title: Physical Review A
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.