Investigating the geometric effects resulting from the detailed behaviors of the confining potential, we consider square and circular confinements to constrain a particle to a space curve. We find a… Click to show full abstract
Investigating the geometric effects resulting from the detailed behaviors of the confining potential, we consider square and circular confinements to constrain a particle to a space curve. We find a torsion-induced geometric potential and a curvature-induced geometric momentum just in the square case, while a geometric gauge potential solely in the circular case. In the presence of electromagnetic field, a geometrically induced magnetic moment couples with magnetic field as an induced Zeeman coupling only for the circular confinement, also. As spin-orbit interaction is considered, we find some additional terms for the spin-orbit coupling, which are induced not only by torsion, but also curvature. Moreover, in the circular case, the spin also couples with an intrinsic angular momentum, which describes the azimuthal motions mapped on the space curve. As an important conclusion for the thin-layer quantization approach, some substantial geometric effects result from the confinement boundaries. Finally, these results are proved on a helical wire.
               
Click one of the above tabs to view related content.