LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Correlations of occupation numbers in the canonical ensemble and application to a Bose-Einstein condensate in a one-dimensional harmonic trap

Photo from wikipedia

We study statistical properties of $N$ non-interacting identical bosons or fermions in the canonical ensemble. We derive several general representations for the $p$-point correlation function of occupation numbers $\overline{n_1\cdots n_p}$.… Click to show full abstract

We study statistical properties of $N$ non-interacting identical bosons or fermions in the canonical ensemble. We derive several general representations for the $p$-point correlation function of occupation numbers $\overline{n_1\cdots n_p}$. We demonstrate that it can be expressed as a ratio of two $p\times p$ determinants involving the (canonical) mean occupations $\overline{n_1}$, ..., $\overline{n_p}$, which can themselves be conveniently expressed in terms of the $k$-body partition functions (with $k\leq N$). We draw some connection with the theory of symmetric functions, and obtain an expression of the correlation function in terms of Schur functions. Our findings are illustrated by revisiting the problem of Bose-Einstein condensation in a 1D harmonic trap, for which we get analytical results. We get the moments of the occupation numbers and the correlation between ground state and excited state occupancies. In the temperature regime dominated by quantum correlations, the distribution of the ground state occupancy is shown to be a truncated Gumbel law. The Gumbel law, describing extreme value statistics, is obtained when the temperature is much smaller than the Bose-Einstein temperature.

Keywords: harmonic trap; occupation numbers; canonical ensemble; bose einstein

Journal Title: Physical Review A
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.