LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

What it takes to avoid equilibration

Photo from academic.microsoft.com

Numerous works have shown that under mild assumptions unitary dynamics inevitably leads to equilibration of physical expectation values if many energy eigenstates contribute to the initial state. Here, we consider… Click to show full abstract

Numerous works have shown that under mild assumptions unitary dynamics inevitably leads to equilibration of physical expectation values if many energy eigenstates contribute to the initial state. Here, we consider systems driven by arbitrary time-dependent Hamiltonians as a protocol to prepare systems that do not equilibrate. We introduce a measure of the resilience against equilibration of such states and show, under natural assumptions, that in order to increase the resilience against equilibration of a given system, one needs to possess a resource system which itself has a large resilience. In this way, we establish a new link between the theory of equilibration and resource theories by quantifying the resilience against equilibration and the resources that are needed to produce it. We connect these findings with insights into local quantum quenches and investigate the (im-)possibility of formulating a second law of equilibration, by studying how resilience can be either only redistributed among subsystems, if these remain completely uncorrelated, or in turn created in a catalytic process if subsystems are allowed to build up some correlations.

Keywords: equilibration; avoid equilibration; resilience; takes avoid; resilience equilibration

Journal Title: Physical Review A
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.