LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

State-independent uncertainty relations

Photo from wikipedia

Preparation uncertainty relations establish a trade-off in the statistical spread of incompatible observables. However, the Heisenberg-Robertson (or Schroedinger's) uncertainty relations are expressed in terms of the product of variances, which… Click to show full abstract

Preparation uncertainty relations establish a trade-off in the statistical spread of incompatible observables. However, the Heisenberg-Robertson (or Schroedinger's) uncertainty relations are expressed in terms of the product of variances, which is null whenever the system is in an eigenstate of one of the observables. So, in this case the relation becomes trivial and in the other cases it must be expressed in terms of a state-dependent bound. Uncertainty relations based on the sum of variances do not suffer from this drawback, as the sum cannot be null if the observables are incompatible, and hence they can capture fully the concept of quantum incompatibility. General procedures to construct generic sum-uncertainty relations are not known. Here we present one such procedure, based on Lie algebraic properties of observables that produces state-independent bounds. We illustrate our result for the cases of the Weyl-Heisenberg algebra, special unitary algebras up to rank 4, and any semisimple compact algebra.

Keywords: independent uncertainty; state independent; uncertainty relations; uncertainty

Journal Title: Physical Review A
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.