LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Quantum soliton evaporation

Photo from wikipedia

Quantum evaporation may occur in a variety of systems such as superfluids, Bose-Einstein condensates, and gravitational black holes (Hawking radiation). However, to date all predictions are based on semiclassical models,… Click to show full abstract

Quantum evaporation may occur in a variety of systems such as superfluids, Bose-Einstein condensates, and gravitational black holes (Hawking radiation). However, to date all predictions are based on semiclassical models, e.g., the Einstein equations and classical space-time metric for a black hole and only the fluctuations are quantized. Here we use a fully quantized dynamical equation, the quantum nonlinear Schr\"odinger equation, to study the evolution of quantum solitons. As a result of quantum fluctuations in the center-of-mass position, the expectation value of the quantum soliton width increases and concomitantly evaporates through the emission of frequency-entangled photon pairs. The frequency of this emission decreases as the soliton evaporates due to the soliton spreading. In the final phase, the soliton mean field collapses irreversibly into a state with zero mean amplitude. These results may provide insight to quantum evaporation in other systems where a full quantum description is still to be developed and highlights that even classically stable systems may also be subject to quantum evaporation.

Keywords: quantum; quantum soliton; evaporation; soliton evaporation; quantum evaporation

Journal Title: Physical Review A
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.