LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Time in quantum mechanics: A fresh look at the continuity equation

The local conservation of a physical quantity whose distribution changes with time is mathematically described by the continuity equation. The corresponding time parameter, however, is defined with respect to an… Click to show full abstract

The local conservation of a physical quantity whose distribution changes with time is mathematically described by the continuity equation. The corresponding time parameter, however, is defined with respect to an idealized classical clock. We consider what happens when this classical time is replaced by a nonrelativistic quantum-mechanical description of the clock. From the clock-dependent Schr\"odinger equation (as an analog of the time-dependent Schr\"odinger equation) we derive a continuity equation, where, instead of a time derivative, an operator occurs that depends on the flux (probability current) density of the clock. This clock-dependent continuity equation can be used to analyze the dynamics of a quantum system and to study degrees of freedom that may be used as internal clocks for an approximate description of the dynamics of the remaining degrees of freedom. As an illustration, we study a simple model for coupled electron-nuclear dynamics and interpret the nuclei as quantum clock for the electronic motion. We find that whenever the Born-Oppenheimer approximation is valid, the continuity equation shows that the nuclei are the only relevant clock for the electrons.

Keywords: continuity equation; time; equation; clock; mechanics

Journal Title: Physical Review A
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.