LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Solitons in a chain of charge-parity-symmetric dimers

Photo from wikipedia

We consider an array of dual-core waveguides, which represent an optical realization of a chain of dimers, with an active (gain-loss) coupling between the cores, opposite signs of discrete diffraction… Click to show full abstract

We consider an array of dual-core waveguides, which represent an optical realization of a chain of dimers, with an active (gain-loss) coupling between the cores, opposite signs of discrete diffraction in the parallel arrays, and a phase-velocity mismatch between them (which is necessary for the stability of the system). The array provides an optical emulation of the charge-parity ($\mathcal{CP}$) symmetry. The addition of the intracore cubic nonlinearity gives rise to several species of fundamental discrete solitons, which exist in continuous families, although the system is non-Hermitian. The existence and stability of the soliton families are explored by means of analytical and numerical methods. An asymptotic analysis is presented for the case of weak intersite coupling (i.e., near the anticontinuum limit), as well as weak coupling between cores in each dimer. Several families of fundamental discrete solitons are found in the semi-infinite gap of the system's spectrum, which have no counterparts in the continuum limit, as well as a branch which belongs to the finite band gap and carries over into a family of stable gap solitons in that limit. One branch develops an oscillatory instability above a critical strength of the intersite coupling, others being stable in their entire existence regions. Unlike solitons in conservative lattices, which are controlled solely by the strength of the intersite coupling, here fundamental-soliton families have several control parameters, one of which, viz., the coefficient of the intercore coupling in the active host medium, may be readily adjusted in the experiment by varying the gain applied to the medium.

Keywords: chain; solitons chain; charge parity; intersite coupling

Journal Title: Physical Review A
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.