Robust and high-precision quantum control is extremely important but challenging for the functionalization of scalable quantum computation. In this paper, we show that this hard problem can be translated to… Click to show full abstract
Robust and high-precision quantum control is extremely important but challenging for the functionalization of scalable quantum computation. In this paper, we show that this hard problem can be translated to a supervised machine learning task by thinking of the time-ordered quantum evolution as a layer-ordered neural network (NN). The seeking of robust quantum controls is then equivalent to training a highly generalizable NN, to which numerous tuning skills matured in machine learning can be transferred. This opens up a door through which a family of robust control algorithms can be developed. We exemplify such potential by introducing the commonly used trick of batch-based optimization, and the resulting batch-based gradient algorithm is numerically shown to be able to remarkably enhance the control robustness while maintaining high fidelity.
               
Click one of the above tabs to view related content.