LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Robust self-testing of two-qubit states

Photo from wikipedia

It is well known that observing nonlocal correlations allows us to draw conclusions about the quantum systems under consideration. In some cases this yields a characterisation which is essentially complete,… Click to show full abstract

It is well known that observing nonlocal correlations allows us to draw conclusions about the quantum systems under consideration. In some cases this yields a characterisation which is essentially complete, a phenomenon known as self-testing. Self-testing becomes particularly interesting if we can make the statement robust, so that it can be applied to a real experimental setup. For the simplest self-testing scenarios the most robust bounds come from the method based on operator inequalities. In this work we elaborate on this idea and apply it to the family of tilted Clauser-Horne-Shimony-Holt (CHSH) inequalities. These inequalities are maximally violated by partially entangled two-qubit states and our goal is to estimate the quality of the state based only on the observed violation. For these inequalities we have reached a candidate bound and while we have not been able to prove it analytically, we have gathered convincing numerical evidence that it holds. Our final contribution is a proof that in the usual formulation, the CHSH inequality only becomes a self-test when the violation exceeds a certain threshold. This shows that self-testing scenarios fall into two distinct classes depending on whether they exhibit such a threshold or not.

Keywords: testing two; two qubit; qubit states; self testing; robust self

Journal Title: Physical Review A
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.