LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Forecasting financial crashes with quantum computing

Photo by alexandermils from unsplash

A key problem in financial mathematics is the forecasting of financial crashes: if we perturb asset prices, will financial institutions fail on a massive scale? This was recently shown to… Click to show full abstract

A key problem in financial mathematics is the forecasting of financial crashes: if we perturb asset prices, will financial institutions fail on a massive scale? This was recently shown to be a computationally intractable (NP-Hard) problem. Financial crashes are inherently difficult to predict, even for a regulator which has complete information about the financial system. In this paper we show how this problem can be handled by quantum annealers. More specifically, we map the equilibrium condition of a financial network to the ground-state problem of a spin-1/2 quantum Hamiltonian with 2-body interactions, i.e., a Quadratic Unconstrained Binary Optimization (QUBO) problem. The equilibrium market values of institutions after a sudden shock to the network can then be calculated via adiabatic quantum computation and, more generically, by quantum annealers. Our procedure can be implemented on near-term quantum processors, providing a potentially more efficient way to predict financial crashes.

Keywords: quantum computing; financial crashes; problem; forecasting financial; crashes quantum

Journal Title: Physical Review A
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.