LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Entanglement between two spatially separated ultracold interacting Fermi gases

Photo by martinadams from unsplash

Multiparticle entangled states, essential ingredients for modern quantum technologies, are routinely generated in experiments of atomic Bose-Einstein condensates (BECs). However, the entanglement in ultracold interacting Fermi gases has not been… Click to show full abstract

Multiparticle entangled states, essential ingredients for modern quantum technologies, are routinely generated in experiments of atomic Bose-Einstein condensates (BECs). However, the entanglement in ultracold interacting Fermi gases has not been yet exploited. In this work, by using an ansatz of composite bosons, we show that many-particle entanglement between two fermionic ensembles localized in spatially separated modes can be generated by splitting an ultracold interacting Fermi gas in the (molecular) BEC regime. This entanglement relies on the fundamental fermion exchange symmetry of molecular constituents and might be used for implementing Bell test of quantum nonlocality in oncoming experiments.

Keywords: fermi gases; interacting fermi; spatially separated; entanglement two; ultracold interacting

Journal Title: Physical Review A
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.