LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Effects of beam wobbling and target rotation on the target temperature in experiments with intense heavy ion beams

Photo from wikipedia

Effects of beam wobbling and target rotation on reducing target temperature are quantitatively considered with simulations and calculations. These manipulations with the beam and target reduce sharpness in the beam-density… Click to show full abstract

Effects of beam wobbling and target rotation on reducing target temperature are quantitatively considered with simulations and calculations. These manipulations with the beam and target reduce sharpness in the beam-density distribution, making it quasiuniform on the target surface. A uniform beam density is essential in prolonged experiments on the synthesis of superheavy nuclei using intense heavy-ion beams and actinide targets. The heavy-ion beam energy partially absorbed by the target and target backing heats them and transfers warmth to the surrounding by different means. The target temperature was initially considered for a stationary target using notions of heat transfer due to the thermal conductivity, radiation emission, and heat removal to dilute gas surrounding the target. The effects of the beam width, the amplitude of the wobbler, and the rotating target velocity on the beam-density distribution across the target surface and, consequently, on its temperature are further estimated with the same notions.

Keywords: target temperature; effects beam; heavy ion; target

Journal Title: Physical Review Accelerators and Beams
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.