The rapid developments in orbital-angular-momentum-carrying Laguerre-Gaussian (LG0 l) modes in recent years have facilitated progresses in optical communication, micromanipulation and quantum information. However, it is still challenging to efficiently generate… Click to show full abstract
The rapid developments in orbital-angular-momentum-carrying Laguerre-Gaussian (LG0 l) modes in recent years have facilitated progresses in optical communication, micromanipulation and quantum information. However, it is still challenging to efficiently generate bright, pure and selectable LG0 l laser modes in compact devices. Here, we demonstrate a low-threshold solid-state laser that can directly output selected high-purity LG0 l modes with high efficiency and controllability. Spin-orbital angular momentum conversion of light is used to reversibly convert the transverse modes inside cavity and determine the output mode index. The generated LG0 1 and LG0 2 laser modes have purities of ~97% and ~93% and slope efficiencies of ~11% and ~5.1%, respectively. Moreover, our cavity design can be easily extended to produce higher-order Laguerre-Gaussian modes and cylindrical vector beams. Such compact laser configuration features flexible control, low threshold, and robustness, making it a practical tool for applications in super-resolution imaging, high-precision interferometer and quantum correlations.
               
Click one of the above tabs to view related content.