Antiferromagnetic materials as active components in spintronic devices promise insensitivity against external magnetic fields, the absence of own magnetic stray fields, and ultrafast dynamics at the picosecond time scale. Materials… Click to show full abstract
Antiferromagnetic materials as active components in spintronic devices promise insensitivity against external magnetic fields, the absence of own magnetic stray fields, and ultrafast dynamics at the picosecond time scale. Materials with certain crystal-symmetry show an intrinsic Neel-order spin-orbit torque that can efficiently switch the magnetic order of an antiferromagnet. The tetragonal variant of CuMnAs was shown to be electrically switchable by this intrinsic spin-orbit effect and its use in memory cells with memristive properties has been recently demonstrated for high-quality films grown with molecular beam epitaxy. Here, we demonstrate that the magnetic order of magnetron-sputtered CuMnAs films can also be manipulated by electrical current pulses. The switching efficiency and relaxation as a function of temperature, current density, and pulse width can be described by a thermal-activation model. Our findings demonstrate that CuMnAs can be fabricated with an industry-compatible deposition technique, which will accelerate the development cycle of devices based on this remarkable material.
               
Click one of the above tabs to view related content.