We consider an approach to fault tolerant quantum computing based on a simple error detecting code operating as the substrate for a conventional surface code. We develop a customised decoder… Click to show full abstract
We consider an approach to fault tolerant quantum computing based on a simple error detecting code operating as the substrate for a conventional surface code. We develop a customised decoder to process the information about the likely location of errors, obtained from the error detect stage, with an advanced variant of the minimum weight perfect matching algorithm. A threshold gate-level error rate of 1.42% is found for the concatenated code given highly asymmetric noise. This is superior to the standard surface code and remains so as we introduce a significant component of depolarising noise; specifically, until the latter is 70% the strength of the former. Moreover, given the asymmetric noise case, the threshold rises to 6.24% if we additionally assume that local operations have 20 times higher fidelity than long range gates. Thus for systems that are both modular and prone to asymmetric noise our code structure can be very advantageous.
               
Click one of the above tabs to view related content.