We demonstrate the use of individual magnetic nanowires (NWs), grown by focused electron beam induced deposition (FEBID), as scanning magnetic force sensors. Measurements of their mechanical susceptibility, thermal motion, and… Click to show full abstract
We demonstrate the use of individual magnetic nanowires (NWs), grown by focused electron beam induced deposition (FEBID), as scanning magnetic force sensors. Measurements of their mechanical susceptibility, thermal motion, and magnetic response show that the NWs posses high-quality flexural mechanical modes and a strong remanent magnetization pointing along their long axis. Together, these properties make the NWs excellent sensors of weak magnetic field patterns, as confirmed by calibration measurements on a micron-sized current-carrying wire and magnetic scanning probe images of a permalloy disk. The flexibility of FEBID in terms of the composition, geometry, and growth location of the resulting NWs, makes it ideal for fabricating scanning probes specifically designed for imaging subtle patterns of magnetization or current density.
               
Click one of the above tabs to view related content.