We demonstrate the use of nanodiamond in constructing holographic nanoparticle-polymer composite transmission gratings with large saturated refractive-index modulation amplitudes at both optical and slow-neutron wavelengths, resulting in efficient control of… Click to show full abstract
We demonstrate the use of nanodiamond in constructing holographic nanoparticle-polymer composite transmission gratings with large saturated refractive-index modulation amplitudes at both optical and slow-neutron wavelengths, resulting in efficient control of light and slow-neutron beams. Nanodiamond possesses a high refractive index at optical wavelengths and large coherent and small incoherent scattering cross sections with low absorption at slow-neutron wavelengths. We describe the synthesis of nanodiamond, the preparation of photopolymerizable nanodiamond-polymer composite films, the construction of transmission gratings in nanodiamond-polymer composite films, and light optical diffraction experiments. Results of slow-neutron diffraction from such gratings are also presented.
               
Click one of the above tabs to view related content.