LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Thermodynamic Performance of Hot-Carrier Solar Cells: A Quantum Transport Model

In conventional solar cells, photogenerated carriers lose part of their energy before they can be extracted to make electricity. The aim of hot-carrier solar cells is to extract the carriers… Click to show full abstract

In conventional solar cells, photogenerated carriers lose part of their energy before they can be extracted to make electricity. The aim of hot-carrier solar cells is to extract the carriers before this energy loss, thereby turning more energy into electrical power. This requires extracting the carriers in a nonequilibrium (nonthermal) energy distribution. Here, we investigate the performance of hot-carrier solar cells for such nonequilibrium distributions. We propose a quantum transport model in which each energy-loss process (carrier thermalization, relaxation, and recombination) is simulated by a B\"uttiker probe. We study charge and heat transport to analyze the hot-carrier solar cell's power output and efficiency, introducing partial efficiencies for different loss processes and the carrier extraction. We show that producing electrical power from a nonequilibrium distribution has the potential to improve the output power and efficiency. Furthermore, in the limit where the distribution is thermal, we prove that a boxcar-shaped transmission for the carrier extraction maximizes the efficiency at any given output power.

Keywords: carrier; carrier solar; energy; solar cells; hot carrier; power

Journal Title: Physical Review Applied
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.