LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Optimization of Nuclear Polarization in an Alkali-Noble Gas Comagnetometer

Photo from wikipedia

Self-compensated comagnetometers, employing overlapping samples of spin-polarized alkali and noble gases (for example K-$^3$He) are promising sensors for exotic beyond-the-standard-model fields and high-precision metrology such as rotation sensing. When the… Click to show full abstract

Self-compensated comagnetometers, employing overlapping samples of spin-polarized alkali and noble gases (for example K-$^3$He) are promising sensors for exotic beyond-the-standard-model fields and high-precision metrology such as rotation sensing. When the comagnetometer operates in the so-called self-compensated regime, the effective field, originating from contact interactions between the alkali valence electrons and the noble-gas nuclei, is compensated with an applied magnetic field. When the comagnetometer begins operation in a given magnetic field, spin-exchange optical pumping establishes equilibrium between the alkali electron-spin polarization and the nuclear-spin polarization. Subsequently, when the magnetic field is tuned to the compensation point, the spin polarization is brought out of the equilibrium conditions. This causes a practical issue for long measurement times. We report on a novel method for closed-loop control of the compensation field. This method allows optimization of the operating parameters, especially magnetic field gradients, in spite of the inherently slow (hours to days) dynamics of the system. With the optimization, higher stable nuclear polarization, longer relaxation times and stronger electron-nuclear coupling are achieved which is useful for nuclear-spin-based quantum memory, spin amplifiers and gyroscopes. The optimized sensor demonstrates a sensitivity comparable to the best previous comagnetometer but with four times lower noble gas density. This paves the way for applications in both fundamental and applied science.

Keywords: noble gas; spin; comagnetometer; polarization; field

Journal Title: Physical Review Applied
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.