LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Polarization Entanglement from Parametric Down-conversion with an LED Pump

Photo from wikipedia

Spontaneous parametric down-conversion (SPDC) is a reliable platform for entanglement generation. Routinely, a coherent laser beam is an essential prerequisite for pumping the nonlinear crystal. Here we break this barrier… Click to show full abstract

Spontaneous parametric down-conversion (SPDC) is a reliable platform for entanglement generation. Routinely, a coherent laser beam is an essential prerequisite for pumping the nonlinear crystal. Here we break this barrier to generate polarization entangled photon pairs by using a commercial light-emitting diode (LED) source to serve as the pump beam. This effect is counterintuitive, as the LED source is of extremely low spatial coherence, which is transferred during the down-conversion process to the biphoton wavefunction. However, the type-II phase-matching condition naturally filters the specific frequency and wavelength of LED light exclusively to participate in SPDC such that localized polarization Bell states can be generated, regardless of the global incoherence over the full transverse plane. In our experiment, we characterize the degree of LED light-induced polarization entanglement in the standard framework of the violation of Bell inequality. We have achieved the Bell value $S=2.33\pm 0.097$, obviously surpassing the classical bound $S=2$ and thus witnessing the quantum entanglement. Our work can be extended to prepare polarization entanglement by using other natural light sources, such as sunlight and bio-light, which holds promise for electricity-free quantum communications in outer space.

Keywords: polarization entanglement; entanglement parametric; parametric conversion; polarization

Journal Title: Physical Review Applied
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.