LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Piezoelectric Response to Coherent Longitudinal and Transverse Acoustic Phonons in a Semiconductor Schottky Diode

Photo from academic.microsoft.com

We study the generation of microwave electronic signals by pumping a (311) GaAs Schottky diode with compressive and shear acoustic phonons, generated by femtosecond optical excitation of an Al _lm… Click to show full abstract

We study the generation of microwave electronic signals by pumping a (311) GaAs Schottky diode with compressive and shear acoustic phonons, generated by femtosecond optical excitation of an Al _lm transducer and mode conversion at the Al-GaAs interface. They propagate through the substrate and arrive at the Schottky device on the opposite surface, where they induce a microwave electronic signal. The arrival time, amplitude and polarity of the signals depend on the phonon mode. A theoretical analysis is made of the polarity of the experimental signals. This includes the piezoelectric and deformation potential mechanisms of electron-phonon interaction in a Schottky contact and shows that the piezoelectric mechanism is dominant for both transverse and longitudinal modes with frequencies below 250 GHz and 70 GHz respectively.

Keywords: response coherent; schottky diode; acoustic phonons; schottky; piezoelectric response

Journal Title: Physical review applied
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.