We study the generation of microwave electronic signals by pumping a (311) GaAs Schottky diode with compressive and shear acoustic phonons, generated by femtosecond optical excitation of an Al _lm… Click to show full abstract
We study the generation of microwave electronic signals by pumping a (311) GaAs Schottky diode with compressive and shear acoustic phonons, generated by femtosecond optical excitation of an Al _lm transducer and mode conversion at the Al-GaAs interface. They propagate through the substrate and arrive at the Schottky device on the opposite surface, where they induce a microwave electronic signal. The arrival time, amplitude and polarity of the signals depend on the phonon mode. A theoretical analysis is made of the polarity of the experimental signals. This includes the piezoelectric and deformation potential mechanisms of electron-phonon interaction in a Schottky contact and shows that the piezoelectric mechanism is dominant for both transverse and longitudinal modes with frequencies below 250 GHz and 70 GHz respectively.
               
Click one of the above tabs to view related content.