LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Effect of temperature on magnetic solitons induced by spin-transfer torque

Spin-transfer torques in a nanocontact to an extended magnetic film can create spin waves that condense to form dissipative droplet solitons. Here we report an experimental study of the temperature… Click to show full abstract

Spin-transfer torques in a nanocontact to an extended magnetic film can create spin waves that condense to form dissipative droplet solitons. Here we report an experimental study of the temperature dependence of the current and applied field thresholds for droplet soliton formation, as well as the nanocontact's electrical characteristics associated with droplet dynamics. Nucleation requires lower current densities at lower temperatures, in contrast to typical spin-transfer-torque-induced switching between static magnetic states. Magnetoresistance and electrical noise measurements (10 MHz-1 GHz) show that droplet solitons become more stable at lower temperature. These results are of fundamental interest in understanding the influence of thermal noise on droplet solitons and have implications for the design of devices using the spin-transfer-torque effects to create and control collective spin excitations.

Keywords: temperature; transfer torque; spin; spin transfer

Journal Title: Physical review applied
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.