LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Laser-Induced Transition between Nonlinear and Linear Resonant Behaviors of a Micromechanical Oscillator

Photo from academic.microsoft.com

We investigate both theoretically and experimentally a laser-based controlled tuning of the nonlinear behaviors of a single mechanical resonator. Thanks to localized three-dimensional modifications induced by femtosecond-laser irradiation, a Duffing-like… Click to show full abstract

We investigate both theoretically and experimentally a laser-based controlled tuning of the nonlinear behaviors of a single mechanical resonator. Thanks to localized three-dimensional modifications induced by femtosecond-laser irradiation, a Duffing-like oscillator is switched from a hardening resonance to a linear response and then to a softening resonance and exhibits a wide tunability of the resonant frequency and a remarkable increase of its linear dynamic range. The principles that underlie laser-tuned nonlinear oscillators are generic and simple, suggesting its wide applicability not only for micro-or nano-optomechanical systems but also as a generic framework for characterizing and understanding the physics of in-volume laser-affected zones.

Keywords: nonlinear linear; transition nonlinear; laser; induced transition; oscillator; laser induced

Journal Title: Physical review applied
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.