LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Structural phase transitions in a MoWSe2 monolayer: Molecular dynamics simulations and variational autoencoder analysis

Photo from wikipedia

Electrical and optoelectronic properties of two-dimensional (2D) transition metal dichalcogenides (TMDCs) can be tuned by exploiting their structural phase transitions. Here semiconducting (2H) to metallic (1T) phase transition is investigated… Click to show full abstract

Electrical and optoelectronic properties of two-dimensional (2D) transition metal dichalcogenides (TMDCs) can be tuned by exploiting their structural phase transitions. Here semiconducting (2H) to metallic (1T) phase transition is investigated in a strained ${\mathrm{MoWSe}}_{2}$ monolayer using molecular dynamics (MD) simulations. Novel intermediate structures called $\ensuremath{\alpha}$ and $\ensuremath{\beta}$ are found between the 2H and 1T phases. These intermediate structures are similar to those observed in a 2D $\mathrm{Mo}{\mathrm{S}}_{2}$ by scanning transmission electron microscopy. A deep generative model, namely the variational autoencoder (VAE) trained by MD data, is used to generate novel heterostructures with $\ensuremath{\alpha}$ and $\ensuremath{\beta}$ interfaces. Quantum simulations based on density functional theory show that these heterostructures are stable and suitable for novel nanoelectronics applications.

Keywords: dynamics simulations; molecular dynamics; phase transitions; variational autoencoder; structural phase; phase

Journal Title: Physical Review B
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.