LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Rotation of the magnetic vortex lattice in Ru7B3 driven by the effects of broken time-reversal and inversion symmetry

Photo from wikipedia

We observe a hysteretic reorientation of the magnetic vortex lattice in the noncentrosymmetric superconductor Ru7B3, with the change in orientation driven by altering magnetic field below Tc. Normally a vortex… Click to show full abstract

We observe a hysteretic reorientation of the magnetic vortex lattice in the noncentrosymmetric superconductor Ru7B3, with the change in orientation driven by altering magnetic field below Tc. Normally a vortex lattice chooses either a single or degenerate set of orientations with respect to a crystal lattice at any given field or temperature, a behavior well described by prevailing phenomenological and microscopic theories. Here, in the absence of any typical VL structural transition, we observe a continuous rotation of the vortex lattice which exhibits a pronounced hysteresis and is driven by a change in magnetic field. We propose that this rotation is related to the spontaneous magnetic fields present in the superconducting phase, which are evidenced by the observation of time-reversal symmetry breaking, and the physics of broken inversion symmetry. Finally, we develop a model from the Ginzburg-Landau approach which shows that the coupling of these to the vortex lattice orientation can result in the rotation we observe.

Keywords: lattice; rotation; magnetic vortex; symmetry; vortex lattice

Journal Title: Physical Review B
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.