LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Current-induced atomic forces in gated graphene nanoconstrictions

Photo by jamescai from unsplash

Electronic current densities can reach extreme values in highly conducting nanostructures where constrictions limit current. For bias voltages on the 1 volt scale, the highly non-equilibrium situation can influence the… Click to show full abstract

Electronic current densities can reach extreme values in highly conducting nanostructures where constrictions limit current. For bias voltages on the 1 volt scale, the highly non-equilibrium situation can influence the electronic density between atoms, leading to significant inter-atomic forces. An easy interpretation of the non-equilibrium forces is currently not available. In this work, we present an ab-initio study based on density functional theory of bias-induced atomic forces in gated graphene nanoconstrictions consisting of junctions between graphene electrodes and graphene nano-ribbons in the presence of current. We find that current-induced bond-forces and bond-charges are correlated, while bond-forces are not simply correlated to bond-currents. We discuss, in particular, how the forces are related to induced charges and the electrostatic potential profile (voltage drop) across the junctions. For long current-carrying junctions we may separate the junction into a part with a voltage drop, and a part without voltage drop. The latter situation can be compared to a nano-ribbon in the presence of current using an ideal ballistic velocity-dependent occupation function. This shows how the combination of voltage drop and current give rise to the strongest current-induced forces in nanostructures.

Keywords: forces gated; atomic forces; graphene nanoconstrictions; induced atomic; current induced; gated graphene

Journal Title: Physical Review B
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.