LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Ferromagnetic phase transition in topological crystalline insulator thin films: Interplay of anomalous Hall angle and magnetic anisotropy

Photo from wikipedia

In magnetic topological phases of matter, the quantum anomalous Hall (QAH) effect is an emergent phenomenon driven by ferromagnetic doping, magnetic proximity effects and strain engineering. The realization of QAH… Click to show full abstract

In magnetic topological phases of matter, the quantum anomalous Hall (QAH) effect is an emergent phenomenon driven by ferromagnetic doping, magnetic proximity effects and strain engineering. The realization of QAH states with multiple dissipationless edge and surface conduction channels defined by a Chern number $\mathcal{C}\geq1$ was foreseen for the ferromagnetically ordered SnTe class of topological crystalline insulators (TCIs). From magnetotransport measurements on Sn$_{1-x}$Mn$_{x}$Te ($0.00\leq{x}\leq{0.08}$)(111) epitaxial thin films grown by molecular beam epitaxy on BaF$_{2}$ substrates, hole mediated ferromagnetism is observed in samples with $x\geq0.06$ and the highest $T_\mathrm{c}\sim7.5\,\mathrm{K}$ is inferred from an anomalous Hall behavior in Sn$_{0.92}$Mn$_{0.08}$Te. The sizable anomalous Hall angle $\sim$0.3 obtained for Sn$_{0.92}$Mn$_{0.08}$Te is one of the greatest reported for magnetic topological materials. The ferromagnetic ordering with perpendicular magnetic anisotropy, complemented by the inception of anomalous Hall effect in the Sn$_{1-x}$Mn$_{x}$Te layers for a thickness commensurate with the decay length of the top and bottom surface states, points at Sn$_{1-x}$Mn$_{x}$Te as a preferential platform for the realization of QAH states in ferromagnetic TCIs.

Keywords: thin films; hall angle; topological crystalline; magnetic anisotropy; anomalous hall; hall

Journal Title: Physical Review B
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.