A semiconductor quantum dot (QD) can generate highly indistinguishable single photons at a high rate. For application in quantum communication and integration in hybrid systems, control of the QD optical… Click to show full abstract
A semiconductor quantum dot (QD) can generate highly indistinguishable single photons at a high rate. For application in quantum communication and integration in hybrid systems, control of the QD optical properties is essential. Understanding the connection between the optical properties of a QD and the growth process is therefore important. Here, we show for GaAs QDs, grown by infilling droplet-etched nanoholes, that the emission wavelength, the neutral-to-charged exciton splitting, and the diamagnetic shift are strongly correlated with the capture-zone area, an important concept from nucleation theory. We show that the capture-zone model applies to the growth of this system even in the limit of a low QD density in which atoms diffuse over $\ensuremath{\mu}\mathrm{m}$ distances. The strong correlations between the various QD parameters facilitate preselection of QDs for applications with specific requirements on the QD properties; they also suggest that a spectrally narrowed QD distribution will result if QD growth on a regular lattice can be achieved.
               
Click one of the above tabs to view related content.